New     Temperature
New     Cluster GFS ENS
New     Precipitation
New     Cloud Forecast P

Archive - Merra2 - Surface wind P

Base Time
Day Month Year
January 2024

Surface wind Merra2 Reanalysis



hourly to monthly from 1980 to last month
Greenwich Mean Time:
12:00 UTC = 12:00 GMT
0.5° x 0.65°
Wind 10 meters above the ground
This chart displays the modeled average wind vector in 10 m above the ground for every grid point of the model (ca. every 80 km). In general, the actual observed wind velocity at 10 m above ground is a little bit lower than the modeled one. However, usually the computed wind velocity is pretty close to the reality. Therefore this chart is very useful for sailors, gliders, hang gliders and balloon pilots. (wind-converter)
The MERRA time period covers the modern era of remotely sensed data, from 1979 through the present, and the special focus of the atmospheric assimilation is the hydrological cycle. Previous long-term reanalyses of the Earth's climate had high levels of uncertainty in precipitation and inter-annual variability. The GEOS-5 data assimilation system used for MERRA implements Incremental Analysis Updates (IAU) to slowly adjust the model states toward the observed state. The water cycle benefits as unrealistic spin down is minimized. In addition, the model physical parameterizations have been tested and evaluated in a data assimilation context, which also reduces the shock of adjusting the model system. Land surface processes are modeled with the state-of-the-art GEOS-5 Catchment hydrology land surface model. MERRA thus makes significant advances in the representation of the water cycle in reanalyses.
Retrospective-analyses (or reanalyses) integrate a variety of observing systems with numerical models to produce a temporally and spatially consistent synthesis of observations and analyses of variables not easily observed. The breadth of variables, as well as observational influence, make reanalyses ideal for investigating climate variability. The Modern Era-Retrospective Analysis for Research and Applications supports NASA's Earth science objectives, by applying the state-of-the-art GEOS-5 data assimilation system that includes many modern observing systems (such as EOS) in a climate framework.

'The requested data is currently processed. Please choose a different base for the time being.

Mouseover effect
available (previous base)     
not available