This website uses cookies. Read about how we use cookies. OK

most recent model run

New     Temperature
New     Cluster GFS ENS
New     Precipitation
New     Cloud Forecast P

Archive - RAP - T-Adv. 500 hPa P

Base Time
Day Month Year
Th 27.01 01 UTC

T-Adv. 500 hPa RAP Model


RAP (Rapid Refresh)

24 times per day, from 00:00 - 23:00 UTC
Greenwich Mean Time:
12:00 UTC = 12:00 GMT
0.128° x 0.123°
Geopotential in 500 hPa (solid, black lines) and Temperature advection in K/6h (colored lines)
The map "T-Adv 500" shows the advection of cold or warm air at 500 hPa level. Negative values indicate cold advection, while positive values indicate warm air advection. Advection of warm or cold air causes the geopotential height to respectively rise or drop, producing vertical rising and sinking motion of air. There is, however, not a direct relationship between temperature advection and resultant vertical motion in the atmosphere since other lifting and sinking mechanisms can complicate the picture, e.g. vorticity advection (see "V-Adv maps").
In weather forecasting, temperature advection maps are often used to locate the postion of wam and cold fronts. Cold advection is common behind cold fronts, while warm advection is common behind warm fronts and ahead of cold fronts. Higher in the atmosphere temperature advection is getting less pronounced, as horizontal much more uniform in temperature and the flow is more zonal.
The Rapid Refresh (RAP) is a NOAA/NCEP operational weather prediction system comprised primarily of a numerical forecast model and analysis/assimilation system to initialize that model. It is run with a horizontal resolution of 13 km and 50 vertical layers. ,
The RAP was developed to serve users needing frequently updated short-range weather forecasts, including those in the US aviation community and US severe weather forecasting community. The model is run for every hour of day and is integrated to 18 hours for each cycle. The RAP uses the ARW core of the WRF model and the Gridpoint Statistical Interpolation (GSI) analysis - the analysis is aided with the assimilation of cloud and hydrometeor data to provide more skill in short-range cloud and precipitation forecasts.
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.

Wikipedia, Numerical weather prediction, of Feb. 9, 2010, 20:50 UTC).
T-Adv. 500 hPa RAP Th 27.01.2022 01 UTC
Mouseover effect
available (previous base)     
not available